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Summary 

For a discrete analogy with n -  1 ~ N grid points of a nonlinear ordinary boundary-value problem with an 
implicit differential equation of the second order, the existence of 2"- i _ 2 extraneous solutions is shown, whose 
sequences of difference quotients of the first and the second order are uniformly bounded as n ---, o0. For selected 
explicitly represented sequences of extraneous solutions, the limiting function as n ---, oo is explicitly given. These 
functions either do not solve the differential equation or only in a non-classical sense. 

1. Introduction 

N o n l i n e a r  o rd ina ry  bvp ( =  bounda ry -va lue  p rob lems)  are  cons idered  on intervals  [a,  b] of  
the i ndependen t  var iable  x. These bvp consis t  of  a d i f ferent ia l  equa t ion  of  o rde r  m and  rn 
b o u n d a r y  condi t ions .  If  it  exists, a classical  solut ion of  the bvp is deno ted  b y  u*. A n y  
cons is ten t  d iscre t iza t ion  of  the bvp is a dop t e d  which makes  use of  the grid po in ts  
x i ~ [a,  b] wi th  i = l (1 )n ,  n ~ N, and  x j  ~ x i f o r j  ~ i. If  it  exists, an exact  solut ion of this 
f in i te -d imens iona l  a p p r o x i m a t i o n  F , ( u , )  = 0 is deno ted  by  u*, where  u* ~ R ' .  By use of  
the difference quot ients  up to o rder  m employed  in the d iscre t iza t ion  of  the bvp,  sequences 
of  d i f ference quot ients  are  def ined  for a given sequence of  d i f ference solutions.  As  n --* oo, 
the  poin twise  convergence  to con t inuous  l imit ing funct ions  f~ : [a,  b] ~ R with  v = O(1)m is 
a necessary requ i rement  for  a meaningfu l  sequence { u* } and  the pe r t inen t  sequences of  
d i f ference quot ients  up to o rder  m. The  l imi t ing funct ions  def ine a classical  so lu t ion  of  the 
bvp  i f f~  i is the v-th der ivat ive at  x -- x i of  a funct ion  ~* : [a,  b] ~ R such that  ~* satisfies 
the  dif ferent ia l  equa t ion  and  the b o u n d a r y  condi t ions .  S tab ih ty  of  a d i f ference me thod  
impl ies  that  the sequence { ( F ' ) - 1  } is un i fo rmly  b o u n d e d  (as n ~ oo) in a ne ighbo rhood  of  
a d iscre t iza t ion  of  u*, where F" is the Freche t -der iva t ive  of  F,. This  p r o p e r t y  guarantees  
poin twise  convergence  of  { u*} toward  u* p rov ided  u* is known  to exist.  A prac t ica l  
c o m p u t a t i o n  of  the sequence ( ( F ' )  -1 } is genera l ly  not  possible,  no t  even for b o u n d e d  n, 
s ince the loca t ion  of  the classical  solut ions  u* is to be  de t e rmined  and  thus unknown.  

* This paper is dedicated to Professor Dr. J. Weissinger on the occasion of his 70th birthday. 
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Sequences of difference solutions which do not converge to a classical solution are 
called "extraneous". Special cases of such sequences communicated in literature pertain to 
explicit or implicit differential equations which are not unusual in any sense; these 
sequences possess the following properties: 

(a) As n ~ o0, either (u* } or any sequence of pertinent difference quotients (up to order 
m) does not converge to a continuous limiting function f~ on [a, b]; see examples in [2], 
[3], [4] where one extraneous sequence is given explicitly in each case for explicit or 
implicit differential equations of orders 2 or 4. 

(b) The sequence of difference solutions converges to a function u ~ Cm[a, b] satisfying 
the boundary conditions. The sequences of difference quotients up to order m are 
uniformly bounded for n ~ oo; however, u does not solve the differential equation, not 
even approximately. See examples in [4] where one extraneous sequence is given explicitly 
in each case. In the example presented subsequently in this paper, there are 2 n -  2 
extraneous solutions for every n ~ N, all of which possess property (b). 

The preceding discussion reveals that difference methods for nonlinear bvp are not 
necessarily "well-behaved" in practically relevant cases such that the computation of a 
few terms of a sequence (u* } is sufficient to imply the existence of a classical solution 
with values close to the ones of the computed difference solutions. This, however, is the 
basis of the justification of the vast majority of pertinent engineering computations. 

The existence of extraneous difference solutions can be excluded if the sufficient 
conditions of theorems [2] are satisfied which guarantee that the number of classical 
solutions of the bvp is equal to the number of difference solutions for every n ~ N. These 
conditions are satisfied only for special classes of nonlinear bvp. 

The example presented subsequently in this paper pertains to the implicit differential 
equation ( y , , ) 2 _  1 2 y ' =  0 for x ~ [0, 1] with the boundary conditions y ( 0 ) = 0  and 
y(1) = 7. Since the differential equation belongs to the class f ( y " )  - g(x,  y, y ' )  = 0 of such 
equations, property (b) may also be expected to hold for suitable discrete analogies of that 
subset of differential equations in this class which does not admit an explicit solution for 
y" .  Consequently, it is irrelevant that the bvp y "  4- X / ~ '  = 0 for x ~ [0,1] with y(0) = 0, 
y(1) = 7, and y'(x) >1 0 does not possess extraneous difference solutions under the employ- 
ment of the same difference quotients as in the case of the implicit differential equation. 
In every investigated case, a numerically approximated extraneous difference solution for 
the bvp under consideration possesses a sufficiently large domain of attraction for the 
practical execution of the Newton iteration method. 

Differential equations f ( x " ) -  g(x, y , y ' )=  0 appear in mathematical models of the 
following types: (A) in mechanics if mass depends on acceleration as, e.g., in the case of 
an oscillating solid body moving in an external compressible "heavy"  fluid which also 
flows into or out of a duct inside the body or (B) in the case of LC-oscillators in electrical 
engineering if the inductivity depends on the derivative di/dt of the current i, due to a 
special control system. 

Since ordinary bvp are special cases of elliptic bvp, the existence of extraneous 
difference solutions may also be expected in the case of suitable discrete analogies of 
certain nonlinear elliptic bvp. This existence is well known in the case of suitable implicit 
discretizations of nonlinear parabolic or hyperbolic initial/boundary-value problems, [1]. 
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2. The boundary-value problem and approximations of its solutions via a discrete analogy 

Real-valued classical solutions of the bvp 

(y,,)2 _ 12y' = 0, y(0) = 0, y(1) = 7 (2.1) 

will be considered. This example does not satisfy the conditions of theorems in [2]. The 
following discussions on extraneous solutions are (i) generalizations of the ones in [4] on 
an almost identical bvp and (ii) essentially presuppose a discretization of the implicit form 
of the differential equation as given in (2.1). The substitution v = y '  yields v' = _+ 
and, thus, 

v(x) = { 03(x + c0) 2 with c o ~ R, or (2.2) 

Therefore, the differential equation in (2.1) is solved (a) by the functions 

{(X+Co)3 +ct °r) wherecl,c2~R, (2.3) 
y(x)= c2 

and (b) arbitrary twice continuously differentiable compositions of these functions. Only 
the following functions are classical solutions of the differential equation and the boundary 
conditions: 

y,(x),,,, (x + l)3-1,  

Yll(X) ,= (x -- 2) 3 + 8 =:'Yt <Y,,, 

0 < x < 1. (2.4) 

The following discrete analogy of (2.1) will be investigated which possesses second 
order of consistency: 

((yj+,-2yj+yj_l)/h2) 2 

for j =  l ( 1 ) n -  1, 

Yo=O, y,,= 7, hn= l, 

= 12(yj+ 1 -yg_,)/2h 

n ~ N ,  n>~2. 

(2.5) 

It will be shown that (2.5) possesses precisely 2 n- t real-valued solutions. For this purpose, 
the problem is equivalently represented via 

u j , - - y j - y j _ l  for j = l (1)n =*Ym =Y,,,-Yo = ~ ui, m = l (1)n ,  (2.6) 
i - - 1  

thus yielding 

((uj+ 1 - uj)/h2) 2 = 6(uj+ i + ui)/h for j = l (1)n - 1 (2.7a) 
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and 

~ u j  = 7, ul =Yl  - Y 0  =Y]  is free. (2 .7b)  
j ~ l  

According  to (2.7a), 

u j + l = u j + k + _ ¢ k 2 + 4 k u j  for j = l ( 1 ) n - 1 ,  w h e r e k , = 3 h  3. (2.8) 

Provided u 1 has been selected, independent  choice of  the plus sign or the minus sign are 
admissible in the subsequent  computa t ion  of u 2, u 3 . . . . .  Each fixed choice for j = 2(1)n 
will be denoted as a " s ign-pa t te rn"  of (2.8). For  an arbi t rary  pat tern  and any n ~ N fixed, 
it is not clear a priori  whether  or  not  (2.7b), and thus y~ = 7, can be satisfied via any choice 
or  even a unique choice of  ul ~ R. 

At  first, the case of  the "p lus  sign only"  in (2.8) is considered, i.e., the choice of + v U 
f o r j  = l (1)n  - 1. Due  to k > 0, (i) uj+ 1 is a monotonica l ly  increasing function of uj and 
(ii) so is y,  = E j=]u j ,  i.e., there is at most  one solution satisfying (2.7b). In  order  to show 
the existence of a n u m b e r  u I ~ R such that (2.7b) is satisfied, u~ is expressed via a free 
pa rame te r  q ~ R : 

u I = q ( q  - 1)k ,  (2.9) 

where  values u I >~ - k / 4 ,  ensuring real solutions, a l ready are obta ined  under  the restric- 
t ion q >_- 1 /2 .  By induction,  (2.8) and (2.9) yield 

u j + , ( n , q ) = ( q + j - 1 ) ( q + j ) k  for j =  l ( 1 ) n -  1 (2.10) 

and,  due to (2.7b), the condition,  denoted by  J, 

y,, =y , , (n ,  q ( n ) )  = ~ u j ( n ,  q ( n ) )  = n ( q  2 + q (n  - 2) + ( n -  2 ) (n  - 1) /3 )3 /n3~7 .  
j ~ l  

(2.11) 

This  quadrat ic  equat ion for q -- q(n)  possesses the root  

q = (2 - n + ¢9n 2 + 4 / 3  ) / 2  (2.12) 

where  the case of  the minus-sign of the root  is not  of  interest since q >~ 1 /2 .  The  solution 
(2.10) satisfying (2.11) will be  denoted by  u (+) or  u) +) for j =  l(1)n.  For  rat ional  
x = m / n  ~ (0, 1], this solution yields 

m ~ n x  

y j ( n ,  q ( n ) )  = • u)+)(n ,  q ( n ) )  = - - x n ( q  2 + q ( x n  - 2) + ( x n  - 2) (xn  - 1 ) / 3 ) .  
j ~ l  

(2.13) 



Correspondingly, there follows the uniform pointwise convergence 

lim yj (n ,  q ( n ) ) = y l ( x )  for every x = m / n  ~ [0, 1]. 
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(2.14) 

Next, the choice of the "minus sign only" in (2.8) is considered i.e., - x/q-. fo r j  = l(1)n - 1. 
This yields a solution u)-)(n, q(n))  denoted by u (-) which satisfies 

u~ - )=  u(,+),_j for j = 1(1)n. (2.15) 

For rational x ~ [0, 1], the corresponding solution y)-)(n,  q(n))  converges in a pointwise 
sense to Yll (x).  In numerical experiments, Yl and Yn have been approximated iteratively by 
use of the Newton method as applied to (2.5), starting within a finite domain of attraction 
centered with respect to these functions such that the components of these vectors were 
chosen by a random number generator. 

3. Extraneous solutions 

It will be shown now that (i) there exists precisely one solution u#(n, q(n))  for every sign 
pattern in (2.8), (ii) for each fixed n, each such solution is bounded according to (3.5), (iii) 
these solutions are distinct, and (iv) the difference quotients of the first and the second 
order of these solutions are uniformly bounded as n ~ oo. The verification of ( i ) -  (iv) 
proceeds via nine steps, (I)-(IX), to be presented now. 

(I) For any f i xed j  ~ (1 . . . . .  n - 1}, (2.8)yields dUj+l/dU j > 0 (i)  in the case of the plus sign 
and ( ii) in the case of the minus sign provided that then uj > 3k/4 .  

(II) For u I >1 - k / 4  and every sign pattern, uj is real-valued for j = l(1)n, which obviously 
is correct in the case of the "plus sign only" in (2.8). The representation (2.9) is now used 
for u j, 

u j= ( q -  1)qk withq>_. 1 /2  (3.1) 

since this restriction of q already yields every uj ~ R such that uj+ 1 ~ R. Due to (2.8), 

u j + a = ( ( q - 1 ) q + l + _ ( l + 4 ( q - 1 ) q ) k = ( q 2 - q + l + _ 1 2 q - l l ) k ,  (3.2) 

where 12q - 11 = 2q - 1 due to q >/1/2.  If the sign pattern prescribes the plus sign for the 
subscriptj  + 1 under consideration, then 

uj+ 1 = q(q  + 1)k > - k / 4  (3.3a) 

because of q >/1/2.  If the minus sign is prescribed for this j ,  then 

uj+ a = ( q -  2 ) ( q -  1)k >/ - k / 4  (3.3b) 

since ( q -  2 ) ( q -  1) possesses the minimum value - k / 4  for q = 3/2.  The representation 
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(3.1) for uj+l is obtained via the substitutions 0 '= q + 1 in the case of (3.3a) and q > /3 /2  
in the case of (3.3b) or ~/:= 2 - q > /1 /2  for 1 / 2  ~< q < 3 / 2  in the case of (3.3b). 

(III)  With uj > - k / 4  fixed, the plus sign in (2.8)yields a larger value of u j+ 1 than the minus 
sign. 

(IV) For arbitrary sign patterns, uj+ 1 is a monotonically increasing function of uj for 
j = l(1)n - 1. According to (I), this montonicity holds if uj > 3k/4.  It is assumed that 
there exists a special sign pattern and a pertinent solution of (2.7) such that there is a 
Jo ~ (1 . . . . .  n } with Ujo <~ 2k. There holds ujo < u~ +) for every choice of n >/2 as is easily 
verified via an inspection of (2.9) and (2.12). This implies (i) Ujo+ p >1 u~ ++)e for p = l(1)n - J0  
since the "plus sign only" in (2.8) yields the maximum rate of increase. Because of (I), 
Uio < u~ +)< u(+)l+~-jo and, analogously, (ii) Ujo_ e < u~ +)+~_jo+p f o r p  = l(1)j0 - 1. Due to (i) 
and (ii), 

uj < ~ u~ + ' =  7. (3.4) 
j=l j=l 

(V) For every sign pattern and n ~ N, there is precisely one solution of (2.7a, b) with (IV) 
implying uniqueness of each solution. Here the existence of the solutions follows from (i) 
y, < 7 if u~ ~< 2k due to (IV), (ii) y, --, ~ as u I ~ ~ due to (IV), and (iii) the continuous 
dependency on u I of y, = F.~= luj. 

(VI) For any fixed n ~ N, different sign patterns imply different solutions. Two sign patterns 
are said to be different if they do not coincide at least for one subscript j0 with 2 ~<J0 ~< n. 
Two solutions u and v are said to be different if there exists a subscr ipt j  such that uj ~ vj. 
If jo is a subscript such that two sign patterns are different and if there holds Ujo_ 1 = Vjo-1 
> 2k for the pertinent solutions due to (IV), then u j0 * Vjo, according to (III). As a 
corollary, it is observed that there are precisely 2 È-a different solutions since there are 
n - 1 grid points with choices of the sign of the root in (2.12). As n increases, so does the 
number  2 n-1 of sequences of solutions of (2.5). 

(VII) Every sequence { uj ) solving (2.7a, b) is enclosed as follows: 

u~+'~< ~ u 2 <<. ~ u~-' for m = l (1 )n ,  under the admission 
j=l j=l j=l 

of every possible sign pattern. 

(3.5) 

If  the first one of these two inequalities is not true, then there exists a smallest number 
rh ~ ( 1 . . . . .  n ) such that 

r~-I ~-1 ] 
E u}+)<~ E uj i f r h > l  

j=l j=l 
and ~ u~ +) > urn. rh rh 
E u)÷, > E uj 
j--1 j=l 

(3.6a) 
(3.6b) 
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This implies that 

uj < u) +) for j = rh + l (1 )n  (3.7) 

for every sign pattern since the choice Of the "plus sign only" in (2.8) ensures the 
maximum rate of increase of the sequence { u j}  for j > rh. Because of (3.6b) and (3.7), 
there follows E~=auj < 7. The second inequality in (3.5) is verified analogously. 

(VIII) For n -  1 ~ N, the difference quotients ( y j - y j _ l ) / h  are uniformly bounded as 
n ---, oo. Because of (2.6), bounds of uj will be determined first. A lower bound uj > 2k for 
every j  = l(1)n follows from (IV). Due to (2.7b), Ujo with any j0 ~ (1 . . . . .  n } is maximized 
if the n - 1 terms other than uj are minimized in that sum. According to the expressions 
for ujo÷l and Ujo_ 1 following from (3.3a, b) such that J=Jo is fixed, uj with J~Jo is 
minimized if (i) the "minus sign only" is used for j >~J0 and (ii) the "plus sign only" is 
used for j <J0. Consequently, the maximum possible value of Ujo is attained for J0 = 0 or 
Jo = n. Without a loss of generality, the case of J0 = n will be discussed further. Due to 
(III), the choice of the "plus sign only" in (2.8) yields the maximum increase of the 
sequence u 1, U 2 . . . . .  U n and thus the desired minimization of the sum U 1 "+" U 2 + . . .  q ' - U  n_ 1" 

Correspondingly, ut, +) is the maximum element, which satisfies 

u{, +) = (q + n - 2)(q + n - 1)k, (3.8) 

making use of (2.10). Therefore and because of (2.12) and k = 3n -3, 

2 k / h  < uj /h <~ u~+)/h = nu~ +) 

( = n  n - 2 - ¢  2 n - l +  2 " 

Therefore, a lower bound and a crude upper bound, M, can be defined as follows: 

0 < - -  
Y j - - Y  j - 1  Uj ~(n _~)2 

= - - < M : =  + = 2 7  
h h 

for n >/2 a n d j  = l (1 )n .  (3.10) 

For n - 1 ~ N, the difference quotient ( Y i + I  - -  2 Yi + Yi-1)/h2 is uniformly bounded (IX) as  

n --~ oo since 

YJ+I--2yJ+Y) -1 = Uj+l--UJ ~ Uj+l +Uj 
h2 7l ~- = 12 2h =." Aj f o r j = l ( 1 ) n  - 1,(3.11) 

due to (2.6) and (2.7a). Because of (3.10), the following crude bound is obtained: 

0 <Aj  < ~/6(27 + 27) --18 f o r j = l ( 1 ) n a n d n > ~ 2 .  

(Villa) The central first difference quotient is bounded as follows: 

lYJ+'--YJ-1 <A_~2 18 J < 27, 
2h - ~ =  

(3,12) 

(3.13) 

due to (2.5), (3.11), and (3.12). 
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4. On limiting functions of sequences of extraneous solutions 

For any fixed h ~ N, a solution of (2.7a, b) is obtained via the choices of (i) an arbitrary 
sign pattern in (2.8) and (ii) a suitably determined value of u I such that (2.7b) is satisfied, 
which is always possible, according to (V). For n ~ ~ ,  pointwise convergence has already 
been shown in the cases of the sequences (a) { y~+)} to the limiting function Yl and (b) 
(y t - )}  to the limiting function Yn. Subsequently, convergence and pertinent limiting 
functions will be discussed for one sign pattern in the case (A) and sign patterns admitting 
a wide scope of variations in the case of (B). 

(A) Here, the alternating sign pattern + ,  - ,  + ,  - . . . .  is chosen in (2.8). Then, (2.8) is 
satisfied by 

u2j= (q -  1)qk for i =  l (1)m,  

u z j + l = ( q - 2 ) ( q - 1 ) k  for j = 0 ( 1 ) m - 1 ,  

2m = n if n is even. (4.1) 

The condition (2.7b) requires that there holds 

m--1 

u2j+ • u2j+, = 7; (4.2) 
j = l  j=0  

this yields the quadratic equation q2 _ 2q + 1 - 7/2km = 0 with 2m .'= n, whose positive 
root is q = 1 + 56~m~-/6. Therefore, and due to (4.1), there follows 

u 2 j = 7 h +  2 ~ h  2 and u 2 j + a = 7 h -  27~-h 2. (4.3) 

Analogous to (2.13), x = £n/m ~ (0, 1) with rh = l(1)m yields 

~m y~ u2j+l+ ~_, u2j =Tx=~(x),  (4.4) 
j=0 j = l  

which is not a solution of the differential equation (y,,)2 _ 12y'  = 0, i.e., (4.1) generates a 
sequence of extraneous solutions of (2.7a, b). 

Due to (2.6), there holds 

Y2j = 7.2jh for j  = l (a )m a n d y 2 j + l  = 7 . ( 2 j +  1)h - 2 ~ h  2 for j =  0(1)m - 1, 

which is an approximation of q~(x). Consequently, 

Y2j+I - - Y 2 j - - 1  = Y 2 j  --  Y2j - -  2 
= 7 = 

2h 2h 

Y 2 j  - -  2 j _  1 

(4.5) 

= 7 + h 2v/-~ -, (4.6) 
h 
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which implies that M = 7 + c, with an arbitrarily small c ~ R +, is the value of the bound 
in (3.10) holding here. Additionally, 

Y2j+2-Y2j+1 +Y2j = 2 2 ~ ,  Y2j+I -Y2j +Y2j-1 = - 2 2 ~  
h 2 h 2 

n 
for j = 1(1) ~ - 1 if n is even. (4.7) 

which implies that there holds Aj = 22v~- --9.1 in this special case. Due to numerical 
experiments, making use of the Newton iteration method, the solution (4.5) possesses a 
finite domain of attraction. 

REMARKS: (1) For n odd, the solution is given by the expressions for uzj and U2j+I in (4.3) 
provided these expressions are multiplied by 7. ( 7 -  hE 2¢~-) -1. (2) It can be shown that 
the following sign patterns in (2.8) yield the limiting function 7x provided the n-dependent 
number u I is chosen suitably: (1) + ,  + ,  , , +,  + . . . . .  (2) + ,  + ,  + . . . .  + ,  
+ ,  + , . . . ,  etc. 

(B1) Here, the following sign pattern is chosen: 

" + o n l y "  for j=l(1)mwithm,=n/2 and 

" - o n l y "  for j=m+l(1)nifniseven. (4.8) 

Then, (2.8) is satisfied by 

u j = ( q + j - E ) ( q + j - 1 ) k  for j = l ( 1 ) m  and 

u , ,+s=(q+m-2-s ) (q+m-l - s )k  for s = l ( 1 ) m .  (4.9) 

Analogous to (4.2), there follows a quadratic equation for q whose positive root is 

q =  ½(3-  m + ~37m 2 + 1 / 3 ) .  (4.10) 

Analogous to (2.13), x .'= ~h/2m ~(0,  1/2] yields a sequence of approximations for 
yj(n, q(n)) which converges in a pointwise sense to the limiting function 

4 - 4 for x ~ [0, 1/2] .  (4.11) 

Analogously, x ,= Fn/2m ~ (1/2, 1] yields the limiting function 

ytR)(x),=(x+ - -3- - f~)  3 ( 1 4 - 3 ~ ) 3  + 7 - for x ~ (1/2,  1]. (4.12) 

These functions satisfy 

ytL)"(1/2)  = -y tR)" (1 /2 )  = ~(1 + 3 ~ )  (4.13) 
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and the following relaxation of the bvp (2.1): 

(y(L)")  2 - -  12y tL)' = 0 

(ytR),,)2 _ 12y(R), = 0 

y(L)(o) = 0, ytR)(1) = 7, 

y{ L),(1/2) = y{R)'(1/2),  

for x ~  (0, 1 /2) ,  

for x ~  (1 /2 ,  1), 

y tL)(1 /2)  = y{a) (1 /2) ,  

(4.14) 

making use of one-sided derivatives of the second order at x = 1/2.  Therefore, (i) the 
composition of y t L) and y tR )  represents a nonclassical generalized solution of the bvp (2.1) 
and (ii) the sequence of solutions defined by (4.8) and (4.9) is extraneous. 

REMARK-" The choices "-only" f o r j  = 1(1)m and " +  only" f o r j  = m + 1(1)n yield limiting 
functions.~t L) and ~t n) which deviate from y t L) and y tR )  only via a replacement of the sign 
of the roots in (4.11), (4.12) by the opposite sign. 

(B2) Here, the following sign pattern is chosen under the assumption of n / 4  ~ ~: 

" + o n l y "  for j = l ( 1 ) m w i t h m : = n / 2  and 

the alternating sign pattern + ,  - ,  + ,  - . . . .  for j = m + 1(1)n. (4.15) 

Analogous to (2.10) or (4.1), respectively, (2.8) is satisfied by 

u j = ( q + j - 2 ) ( q + j - 1 ) k  for j = l ( 1 ) m  (4.16) 

and 

u,,+2 j = (q + m -  2)(q + m -  1)k and 

m (4.17) u , , , + z j _ l = ( q + m - 1 ) ( q + m ) k  for j = 1(1)-~-. 

The condition (2.7b) yields a quadratic equation for q whose positive solution is 

q = ¼ ( 4 -  3m + ~9m 2 -  24m + 1 6 -  8 ( _ 5 2 m  2 _  9m + 15) ). 

Analogous to (2.13), x = t h /2m  ~ (0, 1/2] yields an expression 
converges in a pointwise sense to the limiting function 

y~m)(x) ,= X3 + --9 + lvg1329 X2 + 470 -- 6 13~/1529 
8 64 X for x ~ [0, 1 /2] .  (4.19) 

Correspondingly, x = ½ + Rn/2m ~ (1/2,  1] yields the limiting function 

y (R) (x )  ,= 1 ( 1  _ 7 ~ - )  + 223 + 32 x for x ~ [1 /2 ,  1]. (4.20) 

(4.18) 

for yj(n, q(n))  which 
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Whereas y~L×i)(1/2) =y~R)t~)(1/2) for i = 0 or 1, y~L)"(1/2)4:y~R)"(1/2)= 0. Clearly, (i) 
the composition of y~L) and ytR) does not yield a solution of the differential equation 
( y , , ) 2  12y' = 0  and (ii) the sequence of solutions defined by (4.15) and (4.16) is 
extraneous. 

REMARK: The analysis of the case (B2) can be repeated for modifications of (4.15) such 
that n/2 is replaced by, e.g., n/4. 

For each point in the set 

( (x ,  y)10 ~ x ~< 1, y,(x) <~y ~<Yl l (X))  C ~2, (4.21) 

it can be shown that there is at least one limiting function of a sequence of extraneous 
solutions of (2.71, b) taking on the value y at this point x. 
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